Human Factors

Human  factors  (HF)  is  a  multidisciplinary  area that  aims  to  understand  and  support  the  interactions  between  a  human  user  and  other  elements of a sociotechnical system. Because human factors research  addresses  psychological,  social,  biological,  and  other  task-related  parameters  of  interactions between humans or between a human and a technical system in the context of work and industrial  production,  such  disciplines  as  psychology, robotics,  industrial  design,  engineering,  anthropometry, biology, and graphic design are incorporated. Sport psychology can contribute to the field as  well  because  of  its  knowledge  concerning  performance acquisition and the development of psychological skills like routines, inner speech, or the regulation of stress; all are useful in designing an optimal work environment. The term ergonomics is often used interchangeably with human factors.

The goal of HF research is to develop human-oriented  technology  that  adapts  to  the  physical and  psychological  needs  of  the  human  operator. Because humans must interact with technical and production-oriented  systems,  the  research  and applied  discipline  human  factors  science  (HFS) exists  to  optimize  and  maintain  the  health  and well-being of humans in particular tasks and work environment constellations. Another related goal is to develop and maintain productivity in a particular interaction between the system and the human. Therefore, experts and practitioners in human factors engineering (HFE) work to design an optimal fit  between  the  technical  production  system  and the human action system. Dimensions of such an optimal fit between human and technical systems are,  for  instance,  task and  person-related  equipment  (e.g.,  body-oriented  shape  and  flexibility  of equipment), the presentation and change of information in accordance with human perceptual systems,  and  a  working  structure  that  considers  the biological needs of humans.

From  a  person-related  view,  human  factors are  cognitive,  motivational,  perceptual,  physical, or  biomechanical  properties  of  individuals  and their  behavior  that  may  influence  the  interaction between the human and the technological system. Many approaches in HF research, therefore, explicitly  address  the  structure  and  cognitive  basis  of human action and human motion as a main factor in  the  production  process.  For  instance,  research concerning  attention  in  technological  systems  is based on a close interaction between psychologists and  engineers.  Psychologists  use  their  knowledge about  attention,  perception,  information  processing, and memory to inform engineers, who design products  based  on  these  principles,  for  instance, to  improve  aviation  safety  or  for  constructing new cars.

There  are  many  links  between  human  factors  science  and  sport  psychology.  For  example, performance  plays  a  central  role  in  both  areas. Therefore,  both  disciplines  have  some  potential links to action theory. The action theory approach has a number of historical roots; one of which is a  book  on  planning  and  the  structure  of  behavior, which was written by American psychologists George  A.  Miller,  Eugene  Galanter,  and  Karl  H. Pribram  in  1960.  This  book  broke  away  from behaviorist  concepts  and  formulated  preliminary  ideas  about  the  functional  construction  of action. Further roots can be found in Russian and German  psychology.  Thus  far,  the  action  theory approach  has  been  formulated  most  elaborately for human factors by American researchers such as Donald A. Norman and German scientists like Winfried  Hacker.  Action  theory  addresses,  for instance, the finding that the various elements of a  behavior  that  can  be  observed  externally  are based on a deep hierarchical structure and are carried out in order to attain a specific action goal. Hence, activities in production processes or sport environments are always performed relative to a goal and are directed toward this goal. This gives all  of  the  psychological  processes  and  structures (emotions, representations, etc.) within a human– machine  interaction  or  a  particular  sport  setting an  action-regulating  function.  Based  on  such a  common  background,  it  is  possible  for  sport psychology  to  inform  human  factors  researchers about  well-investigated  elements  of  action  and performance and vice versa. While human factors research  topics  like  perception,  cognition,  attention, and motivation in human–machine interaction are well investigated, important topics often investigated in sport psychology like emotion are mostly  ignored.  In  2011,  David  W.  Eccles,  Paul Ward, Christopher Janelle, and other researchers addressed this discrepancy. They argued that the development  of  emotional  self-regulatory  skills in human operators could support system performance,  explain  risk-taking  behavior  in  human– machine  interaction,  and  may  also  influence motor planning and motor control in the context of technical systems.

In recent years, the expanding field of cognitive robotics  has  offered  new  opportunities  to  study the construction and functionality of human factors like cognitive representations, attention, and communication  with  technical  platforms,  and  in doing so has changed some perspectives in human factors  research.  The  long-term  goal  of  newly developed  human  factors  disciplines  like  cognitive  interaction  technology  is  to  develop  robots with unprecedented sensorimotor, emotional, and cognitive intelligence to assist human activities in the  industrial  production  process.  Interestingly, current  robot  technology  has  matured  to  the point of being able to approximate a reasonable spectrum  of  specialized  perceptual,  cognitive, and  motor  capabilities,  allowing  researchers  to explore the bigger picture that is the architecture for  the  integration  of  these  functions  into  robot action  control.  This  provides  the  opportunity  to fit  existing  human  models  of  perception,  representation,  motor  control,  and  decision  making together  with  architectures  generated  for  robot actions. Cognitive interaction technology research labs have produced impressive humanoid robots, robot musicians, dancing robots, robot arms, and brain–machine interfaces, among others, to study the organization and functioning of human action and  human–machine  interaction  in  more  detail. Based on such platforms, HF researchers are not only addressing the attention of a human user as the guiding factor of human–machine interaction, but  furthermore,  they  wish  to  create  a  shared action  and  a  shared  attention  between  humans and  robots.  This  research  aims  to  systematically investigate the principles needed to build artificial  cognitive systems based on the human archetype that  can  interact  with  a  human  in  an  intuitive way,  including  the  acquisition  of  new  skills  by learning.

References:

  1. Eccles, D. W., Ward, P., Woodman, T., Janelle, C. M., Le Scanff, C., Ehrlinger, J., et al. (2011). Where’s the emotion? How sport psychology can inform research on emotion in human factors. Human Factors, 53, 180–202.
  2. Norman, D. A. (1981). Organization of action slips. Psychological Review, 88, 1–15.
  3. Schack, T., & Ritter, H. (2009). The cognitive nature of action—Functional links between cognitive psychology, movement science, and robotics. Progress in Brain Research, 174, 231–250. doi: 10.1016/ S0079-6123(09)01319-3

See also:

  • Sports Psychology
  • Motor Development
Scroll to Top