The machining and machinery industry manufactures metal parts that are used to make machines, tools, and other machine parts. In other words, the industry creates metal machines that make other machines. The machining and machinery industry also produces parts for such items as engines, tools, and other machinery. It is, in effect, the first stage of the manufacturing process. This industry covers, for example, the manufacture of boring or jig machines that produce nuts and bolts, as well as the production of the nuts and bolts themselves.
Although humans have used wheels and other tools since the dawn of history, the use of machine tools is relatively recent. When the Scottish inventor James Watt experimented with steam engines in the mid-1700s, he could not find anyone who could drill a perfect hole; thus his engines leaked steam. Then in 1775, Englishman John Wilkinson invented the first relatively accurate machine tool, a mill to bore cylinders for Watt’s steam engine.
Several years later, Matthew Murray, Joseph Clement, and Richard Murray developed the planer, which could be used to smooth holes and flat surfaces to the necessary degrees. Henry Maudslay introduced the concept of precision to heavy machinery. Previously only watches and scientific instruments were made with this degree of precision. The early 1880s saw the development of the first screw-cutting lathe, which remains the standard today. Also about that time, electric motors began making major improvements in industrial productivity.
This period in the 19th century, which came to be known as the industrial revolution, brought about the mass production of many products. As new entrepreneurs and inventors emerged, the number of manufacturing plants on both sides of the Atlantic grew, as did the demand for machine tools and equipment.
The United States gradually became the principle producer of machine tools. The most rapid growth came, however, during World Wars I and II when there was a huge demand for tanks, planes, jeeps, ships, and guns. Machines had to be devised to turn out the required parts. After World War II, the numbers and types of consumer goods that Americans desired continued to increase, and the mass-production methods developed for war were converted and improved to accommodate those demands.
Electrical control mechanisms were refined during the 1940s, and when computers were introduced into industry, the nature of many manufacturing operations changed. Automated equipment, including robotics, now perform many operations formerly done by machine operators and other precision metalworkers. Computer-controlled equipment is being used to program machines and to design and manufacture machine tools. As technology continues to advance, machines are becoming increasingly more sophisticated and able to produce highly precise machined parts.